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We study the real time dynamics of a quantum system with a potential barrier coupled to a
heat-bath environment. The time evolution of the density matrix starting from a general initial
state is evaluated explicitly in the semiclassical approximation. As the temperature is decreased
below a critical temperature 7., large quantum fluctuations render the harmonic approximation

near the barrier top insufficient and a caustic arises.

As a consequence, anharmonicities of the

potential become essential even in the close vicinity of the barrier top and the semiclassical density
matrix has to be evaluated beyond the Gaussian approximation. The range of validity with respect
to temperature and time of the semiclassical analytical results is discussed in detail. We illustrate
the outcome of the theory with an explicit example.

PACS number(s): 05.40.+j, 03.65.Sq, 82.20.Db

I. INTRODUCTION

In most problems of barrier penetration in physics and
chemistry the reaction coordinate describing the transi-
tion across the barrier interacts with a large number of
microscopic degrees of freedom. Hence the theoretical
description has to incorporate the effects of a heat bath
environment. Although this problem has been studied
extensively in the past decade [1], an approach to dissi-
pative barrier transmission processes without any ad hoc
assumptions is still not available in the quantum regime.
In an earlier article [2], which is referred to as I hence-
forth, we have given a general framework to investigate
the problem of dissipative barrier penetration on the ba-
sis of a dynamical theory. The method is based on the
path integral description of dissipative quantum systems
introduced by Feynman and co-workers [3,4]. These tech-
niques have been employed by Caldeira and Leggett [5]
to treat barrier penetration problems and extended to a
wider class of useful initial conditions by Grabert et al.
[6]. In I we applied the theory of dissipative quantum
mechanics [6,7] to a system with a potential barrier, the
height of which is large compared to other relevant energy
scales. Then a semiclassical evaluation of the path inte-
grals determining the time-dependent density matrix is
adequate. We have shown explicitly that for high enough
temperatures, where the barrier is crossed primarily by
thermally activated processes, the resulting evolution law
for the density matrix allows for a nonequilibrium qua-
sistationary flux state. In the temperature range studied
in I the flux state is only affected by the harmonic part
of the barrier potential and the resulting barrier pene-
tration rate was found to coincide with earlier results
on quantum corrections to thermally activated processes
derived by thermodynamic methods [8]. In the present
article we extend the theory to the temperature region
where quantum tunneling becomes essential.

Within the path integral approach the position repre-
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sentation of the time-dependent density matrix is given
as a threefold path integral where two path integrals are
in real time and one is in imaginary time. As discussed in
detail in I, when the temperature is lowered the harmonic
approximation for the barrier potential causes specific
divergencies of the imaginary time path integral. Well
known as the problem of caustics [9], these divergencies
are an artifact of the harmonic approximation of the po-
tential. As a consequence, the evaluation of the imag-
inary time path integral in the Gaussian semiclassical
approximation breaks down near the caustic and anhar-
monicities of the potential must be taken into account
even for coordinates near the barrier top. This prob-
lem is independent of damping and occurs already in the
semiclassical evaluation of the equilibrium density matrix
of a system with barrier potential [10,11].

To extend the dynamical theory of quantum mechan-
ical barrier transmission presented in I to lower tem-
peratures, one has to determine the time evolution of
the density matrix for temperatures near 7. where the
Gaussian semiclassical approximation for the density ma-
trix breaks down. This is done in the present article for
a general anharmonic and symmetric barrier potential.
On one hand, the analytical results derived can be used
to investigate the dynamics near the barrier top for a
wide class of nonequilibrium initial states; on the other
hand, they can be applied to determine the nonequilib-
rium stationary flux state near 7., which is planned for
a subsequent work.

The article is organized as follows. In Sec. II we spec-
ify the problem introducing the barrier potential and the
expansion parameters for the semiclassical approxima-
tion. The explicit evaluation of the minimal action paths
is performed in Secs. IIT and IV. In Sec. V the corre-
sponding minimal action is discussed. The contribution
of the quantum fluctuations about the minimal action
paths is determined in Sec. VI, leading to the semiclassi-
cal time-dependent density matrix. Finally, in Sec. VII
we illustrate our results with an explicit example and
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present our conclusions. Most of the results of the article
are also included in [12].

II. FORMULATION OF THE PROBLEM

As shown in detail in [6] the position representation of
the time-dependent reduced density matrix of a dissipa-
tive quantum system can be written as

p(zf,rs,t) = /dzidridqdq'J(:z:f,rf,t,w,-,ri,q‘,tj')
XA(:E,‘,’I',;, q_v q_l) (1)

Here J(zg,7f,t,2;,7;,4,q) denotes the propagating
function given as a three-fold path integral where two
path integrals are in real time and one is in imaginary
time. The preparation function A(z;,7;,q,q) describes
the deviation from thermal equilibrium in the initial state

p((l:f,'l’f,O) = /dljdq' A(:Ef’rf’q-’ q_l)pﬁ(q_a ql)r (2)

where pg = trg(Wp) in which Wp is the equilibrium den-
sity matrix of the entire system.

In the following, we consider the dynamics of systems
in a potential field V' (g) that has a barrier. In particular,
we study the semiclassical approximation of the propa-
gating function for coordinates near the barrier top.

A. Barrier potential and expansion parameters

Assuming that the barrier top isat ¢ = 0 and V(0) = 0,
the general form of a symmetric barrier potential reads

oo k—2
_ 1 2 2 Ck [ 4 : 2k—2
Vig) = —3 M [1 -y (L)

k=2

Here the cy; are dimensionless coefficients. We assume
cqg > 0 so that the barrier potential becomes broader
than its harmonic approximation at lower energies. g, is
a characteristic length indicating a typical distance from
the barrier top at which anharmonic terms of the po-
tential becomes essential. For small |¢| < q,, the bar-
rier potential is harmonic with frequency wgy. For the
following discussion it is convenient to introduce a sec-
ond length scale g5, which characterizes the barrier region
within which we want to determine the time evolution.
The barrier region is chosen sufficiently small so that

6
Sz, r,q] = /da [lq +V(@)+ = /Odcr'k(a—a) (0)g (o)

4705

€= /49 (4)

is a small dimensionless parameter.

Of course, for an anharmonic potential field, the three-
fold path integral defining the propagating function in (1)
cannot be evaluated exactly. However, when the quan-
tum mechanical ground state in the inverted barrier po-
tential is only weakly affected by anharmonicities of the
potential, a semiclassical approximation of the propagat-
ing function suffices for coordinates near the barrier top.
In I we introduced go = 1/%/2Mwy as a natural quantum
mechanical length scale that is the variance of the coor-
dinate in the ground state of a harmonic oscillator with
oscillation frequency wo. Hence a semiclassical evaluation
of the path integral is sufficient if

€=90/qa (5)

is a small dimensionless parameter. Within the semiclas-
sical approximation, we first consider the classical motion
in the anharmonic potential. Afterward, the quantum
fluctuations about the classical paths are determined.
Since neither the classical nor the quantum dynamics can
be solved exactly, both the small parameter £ for the clas-
sical motion and the small parameter € for the quantum
fluctuations will serve as expansion parameters to eval-
uate the density matrix (1) analytically for coordinates
near the barrier top.

This calculation becomes more transparent if we intro-
duce a dimensionless formulation. In the following, all
coordinates are measured in units of g¢p, all frequencies
in units of wp, and all times in units of 1/wg. According
to (I26) [13], the propagating function in (1) then reads,
in terms of the sum and difference coordinates = and =

defined in (122),

J((Ef,'l‘f,t, TiyTiyq, ql)

_ 153/Dwmq exp[ 2% %[z, r, q]] (6)

where the path integral is over all paths z(s) and r(s),
0 < s <t, in real time with

z(0) = z;, 7(0) =r;, z(t) = x4, 7(t) =75
and over all paths g(o), 0 < o < 0, in imaginary time
with §(0) = ¢’ and @(8) = g. Here 6 = hBwq is the di-
mensionless inverse temperature and, according to (128),
the effective action X[z, ,q] is given by

/da/dsK* (s —i0)q(o)x(s)

+/0 ds [#F — V(r +2/2) + V(r — 2/2) — riy(s)z(s)]

B /otds [/o ds'y(s — &) 2(s)7(s') —

% fo A5 K (s — o) z(s)w(s')] . (1)
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Here the asterisk denotes complex conjugation and the
kernel K (s — io) is specified in (I129). The dimensionless
potential field is given by

V(g) = ——;—qz (1 - i Cz—ké‘”“zqz’“‘z) : (8)

k=2

We mention that, because within the harmonic approx-
imation the classical equations of motion can be solved
exactly, there was no need to introduce a classical expan-
sion parameter ¢ in I. Formally, we recover the dimension-
less formulation in I by setting £ = €. Furthermore, we
note that the relevant quantum fluctuations give a con-
tribution to the full action ¥ of order 1 (i.e., of order & in
dimensional units). Hence the semiclassical expansion is
consistent only when the classical action as an expansion
in terms of £ is also determined at least to order 1.

B. Critical temperature

For high temperatures the anharmonic terms in the
potential (8) give only small corrections and a simple
semiclassical approximation with Gaussian fluctuations
is appropriate, as shown in I. However, the harmonic ap-
proximation breaks down and anharmonicities become
essential even for coordinates near the barrier top when
the temperature is lowered. Near a critical temperature
T, determined by

1 2 1
- _-4 2 =0 9
M= 545 2 T, "

c

the propagating function diverges within the harmonic
approximation. Here v, = 2nn/0 are the dimension-
less Matsubara frequencies and 4(z) denotes the Laplace
transform of the macroscopic damping kernel v(s). For
vanishing damping one has A = —1 cot(6/2) and there-
fore . = m, i.e., T, = Awo/mkp in dimensional units.
This divergence corresponds to the problem of caustics
for a harmonic oscillator [9,10]. Since the caustics are an
artifact of the harmonic approximation, the temperature
region near and below 7, requires explicit account of the
anharmonicities of the barrier potential.

In the following, we extend the investigation in I and
evaluate the density matrix p(zys,7¢,t) in a semiclassi-
cal approximation near 7. and for coordinates near the
barrier top. Hence we are interested in dimensional co-
ordinates ¢ and ¢’ of order g, or smaller, that is, in di-
mensionless coordinates ¢ and ry of order 1 or smaller.
In the worst case the density matrix p(z¢,7ry,t) could be
affected by trajectories starting at ¢ = 0 in the nonlinear
range of the potential, that is, near initial dimensional
coordinates of order ¢,. In dimensionless units z;, 7;,
g, and ¢’ would then be of order 1/£. Now, from T we
know that well above T, and within a large time domain,
excluding, however, extremely long times, the main con-
tribution to p(xs,r¢,t) comes from trajectories with z;,
ri, 4, and § of order 1 or smaller. For lower temper-
atures the range of initial coordinates that are relevant
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for the density matrix increases and near T, the coor-
dinates can be restricted to be at most of order 1 only
for small times. However, we are primarily interested in
the behavior of the density matrix for long times. In a
subsequent paper we plan to show that near and above
T., a semiclassical approximation for initial coordinates
that are of order £~1/% or smaller suffices to determine
the behavior of the density matrix in the barrier region
on the time scale of the quasistationary nonequilibrium
flux state. Hence we shall seek in this article solutions of
the equations of motions for end points of order £~1/4,

In Sec. III we first determine perturbatively the ex-
tremal imaginary time path for temperatures near T.,.
This requires some care since near T, the imaginary time
path is affected strongly by anharmonicities and a simple
expansion about the path in the harmonic approximation
fails. Subsequently, in Secs. IV and V the extremal real
time paths and the minimal effective action are evalu-
ated perturbatively. Thereby, we use £ as an expansion
parameter. For the range of end points considered here,
the minimal action paths are affected only by a finite
number of anharmonic terms in the expansion (8) of the
barrier potential, which is the reason why we can obtain
analytic results.

III. EXTREMAL IMAGINARY TIME PATH

In this section we solve the equation of motion for the
extremal path in imaginary time for small &.

A. Marginal mode

The equations of motion for the extremal paths of the
effective action in the propagating function are given by
(I41)—(143). In particular, the minimal action path in
imaginary times obeys the equation of motion

0 _
q— /; do' k(o — o')g(o') — %‘(;)

— /0 dsK* (s — io)a(s), (10)

where §(0) = ¢’ and §g(0) = g. The inhomogeneity on the
right-hand side couples §(o) to the real time motion.

For high temperatures (10) was solved in I using the
Fourier expansion

g(o) = % Z gn exp (tvp0) . (11)

n=—oo

However, as mentioned above, when the temperature is
lowered, that is, the dimensionless inverse temperature
0 is increased, the Fourier coefficients ¢, diverge for a
purely harmonic barrier when 6, is approached. For van-
ishing damping and a weakly anharmonic potential it
can been shown [10] that one may choose an appropri-
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ate Fourier expansion of the extremal action path where
only one Fourier mode amplitude grows near 6. and then
saturates at a finite value due to the anharmonicities of
the potential. Accordingly, to determine the imaginary
time path (o) near 6. for finite damping, we first have
to identify the marginal direction in function space along
which the solution of (10) within the harmonic approxi-
mation grows for § — 6.. From the solution (I57), which
we refer to as the “harmonic path” henceforth, we obtain

hm Ag(o Z Up, €xp(iv,0) , (12)

n=—00 0=6.
with the abbreviation
. -1
un = [V3 = 1+ a3 (val)] (13)

and where, according to (I56),

”
ﬁl

Z Unp gn[z(8)] (14)

mls-

remains finite for vanishing A. At @ = 6. the right-hand
side of (12) vanishes at the boundaries of the time interval

[0,6]. The marginal direction ¢(o) in function space,
which satisfies the boundary condition ¢(0) = ¢(6) = 0
also for 8 # 0., is then obtained as
1 .

o(0) = —-A+ 7 n_z_oo Up, €Xp(ivno). (15)

For vanishing damping we have
1.

‘11_1)% hm ¢(o) = —3 sin(o), o € [0,6], (16)

which coincides with our earlier result [10]. In view of

(16) it is convenient to use the Fourier expansion

g(o) = %i Qr sm( ) (17)

to determine §(o’) near 6.. This series continues the path
outside [0, 8] as an antisymmetric and periodic path with
period 20 leading to jump singularities in (o) at the
end points of the time interval. The singularities are
completely determined by the boundary conditions of the
periodically continued path g(o), i.e.,

7(0%) - g(07) = 27’
q(6%) —4(67) = —24. (18)

The matrix that transformms between the basis
{exp (iv,,0)};12° o, and the basis {sin (vx0/2)}g, has
the coefficients

0
Ukn = %/0 do sin (%0‘) exp (iv,0) . (19)

For k even, one simply has

4707
U2l,n = i‘sl,lnl Sgn(n) 3 1= 1,2,3,..., (20)

while for k£ odd,
4 2+1 —0,1,2,.... (21)

U21+1y‘n = ; (2l + 1)2 _ (2n)2 ’ l

Clearly, up to a normalization constant the matrix Uy n
is unitary. For convenience, the normalization in (21) has
been chosen so that

oo
Z Uziy1,nUz0 41,0 = 201,00 (22)

n=—oo

Of course, in the time interval (0,6) the Fourier ex-
pansions (11) and (17) coincide. From (12) the marginal
mode is found to read

oo oo

#(o) =

. Val+1
Usit1,n Un sin (—2—+0)

1
1 Sin (V2;+1 ”)

2
2n . [(Va+1
U21+1,n Up S 2 al,

2+1

/\-i—

(23)

which gives the marginal mode in the representation (17).
Here the second sum in the intermediate result is the
Fourier representation of the constant part in (15) with
a discontinuity at o = 0

(”2’2+1a) = +A. (24)

By the use of (20) and (21), the imaginary time path
(I57) in the harmonic approximation may be written as

d—-)O:h iy Z2l+1

g(o) = % Z w {—2uZ — 2 fi[z(s)]} sin(vi0)
=0

+24(0) + i(0). (25)

. oo oo 2
10 =55 % (g47) Vneantagale(o)

47
o (2422) + 57 o win (20)

(26)

collects terms in the subspace {sin(vazi+10/2)};o, that
remain of order 1 or smaller near 6.. Furthermore, the
functionals

fal(s)] = / ds fa(s)a(s) 27)
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and
t
galo(@)] = [ dsgn(2)a(s) (28)
0
describe the coupling to the real time motion where
1d
Fals) = =532 17(8) = 9n(3)] (29)

and

gn(s) = () = '—”;—'{&uvnn exp(~[vnls)

+ / "~ duy(u) exp [—|vn(s—u)|1} (30)

are auxiliary functions introduced in (I31) and (I34).

B. Extremal imaginary time path
for temperatures near T,

With ¢(o) we have identified the direction in function
space along which the minimal action path diverges for
inverse temperatures near 6. in the harmonic approxi-
mation. To determine the extremal imaginary time path
near . for an anharmonic potential, we make the ansatz

20) = 3 3 Qu sin(uo) + Q4(0) +d(0).  (31)
=1

Anharmonic terms will be seen to strongly affect the
mode amplitude Q. We recall that ¢’ and § as well as
the end points of the real time path z(s) are assumed
to be at most of order £~/ or smaller. Then the mode
amplitude Q may become at most of order £3/4. This
assumption will be confirmed self-consistently below. In-
serting (31) into the equation of motion (10) we gain, by
use of (3),

oo 0
u t Qa+2 Z cor€?* 2 / do sin(v0)g(o) 2!
k=2 0
= —2uT — 2filz(s)], 1=1,2,3,... (32)
and

1

AQ_1+0A

oo 6
3 cane?? / dod(0)q(o)? 1 =b.
k=2 0

(33)

Equation (32) for the even Fourier mode amplitudes
can be solved perturbatively by expanding about the har-
monic path. We set

Q2 = Qa0 + 2 Qa1 + O(£%%), (34)

where the Q2,0 are of order ¢ ~1/4 and describe the solu-
tion in the harmonic approximation. The Qg1 are also

of order £~1/% and take into account corrections due to

anharmonic terms. Hence we obtain

Q21,0 = —w {211 + 2 fi[z(s)]} (35)

and

Qa1 = —3cat®/?u;Q? Z D2,mi Q2m,0- (36)

m=1

Here we have introduced the coefficients

Do=2 [Cargloy (37)
and
2 [° k
Dpyyoty, = EA do ¢(o)"™ 71!__Ilsin(z/lma). (38)

Further, we have made use of the fact that D3 ; vanishes.

For the marginal mode amplitude Q one has from (33),
apart from corrections of order £3/4,

AQ - c4§2gD4(1 —6A)0®

~ 9 —_
—3C4§2Q2£ dad)(a)%(o) =b. (39)

Now, from (35) we recover the harmonic solution for
the even Fourier mode amplitudes apart from corrections
that are at most of order £!/4. Further, in view of (14)
the coefficient b is of order £~1/4 or smaller. Hence, from
(39) we see that for A — 0 the coefficient ) no longer
diverges but saturates at a finite value of order £~3/% or
smaller, as assumed above. The purely harmonic solu-
tion fails and the anharmonic term becomes important
when A is of order £1/2 or smaller. We note that the third
term and the term containing AQ3 on the left-hand side
of (39) give a correction of order £1/4 while the second
term may be of order £~1/4,

To make the £ dependence more explicit, it is advan-
tageous to set

=1 anps
Q= ;€20 (40)

The amplitude Q is of order £~1/4 or smaller near the
caustic and thus of the same order of magnitude as the
end points. Then, using (14) the cubic equation (39)
takes the form

A Q —20%c4 D4(1 — 0A) £Y/2Q3 — 60c48Q? /adaqs(a)”
£1/2 44 4 o

1.3
20|" "9

n=—oo

x4(0) =

Un gn[ﬂﬂ(S)]] - (41)

The properties of this equation will be discussed in Sec.
VD. The minimal action path in imaginary time (31)
is given in terms of the solutions @ of (41) by virtue of
(35), (36), and (40). Of course, (41) can be evaluated
only when the real time path z(s) is known.
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IV. EXTREMAL REAL TIME PATHS

After the study of the extremal imaginary time path
d(o), we proceed and determine the extremal real time
paths 7(s) and z(s). Due to the coupling of (o) to the
real time motion, the real time paths are also affected by
anharmonicities of the potential field. The correspond-
ing equations of motions can be solved perturbatively by
expanding about the paths in the purely harmonic po-

J
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tential. This expansion proceeds in powers of £1/2. In
Sec. IV A we specify the equations of motions for r(s)
and z(s), which will be solved in Secs. IV B-IV D.

A. Equations of motions

Let us first consider the equation of motion (I42) for
the real time path r(s)

8 t 6
7+ dis /0 ds'y(s — s )r(s') + %dir V(ir+z/2)+V(r—z/2)] = z'L ds'K'(s — s')z(s") + /0 doK*(s —i0)g(o). (42)

The inhomogeneity reads

i/otds'K'(s —sz(s') + /OedaK*(s —10)q(0o)

—i /0 ds' R(s,s")a(s') + F(s), (43)

where we have inserted the result (31) for §(o) and made
use of (35) and (36) to obtain the right-hand side. Here

R(s,s') = R(s,s') + €Y% 5R(s,s") (44)
with

R(s,s') = K'(s—¢')

oo

5 3 tn [9n(5)9a(8") = Sa()Fa(s)] (45)

n=—oo

and

lSR(S, S’) = 66451/20Q2 Z Dz,nn’ fn(s)un.fﬂ’ (s)u'""’

(46)
which are both of order 1 or smaller. Furthermore,
F(s) = F(s) + £6F(s), (47)
where
L Q AQ b
F(s) = —izC>(s) + 26 an C1(s) — 26~(s) (m ~ 29
(48)

and
8F(s) = 6ic,0Q%*z Z Fn(8)UntUn Vpn'Da npe (49)

are both of order £~3/4 or smaller. In (48) we have in-
troduced the functions [see also (162)]

Cl(s) =% Z ungn(s)a
02(3) Z% Z UnUn .f‘n(s)' (50)

For high enough temperatures, where the cubic and
quadratic terms in (41) may be disregarded, one has

R(s,s') = R(s,s") (51)
and

F(s) = F(s) = ;Cl(s)

2

—izCa(s) - ¢

/o ds' C1(s)C1(s")z(s")  (52)

which is the known high-temperature result (I61). How-
ever, for temperatures close to T,, the amplitude Q is of

order £~/ or smaller and F(s) becomes of order ¢~3/4
or smaller. For large enough times ¢ we then have
— —3/4
Jmax r(s) = 0(€™"%). (53)
1/4

Thus anharmonic terms in (42) become of order £~
and cannot be neglected since they lead to terms of order
£71/2 in the minimal effective action. We have

1d
> V(r+z/2)+V(r—z/2)]

= —r + c 833 + 0(53/4), (54)

where we have assumed that z(s) is of order £~/4 or
smaller, which will be confirmed at the end of Sec. IV B.
The equation of motion (42) can then be solved pertur-
batively using the ansatz

r(s) = ro(s) + €Y/2ri(s) + £ra(s) + O(€¥%),  (55)

where 7(s) may be of order £~3/% with r9(0) = r; and
ro(t) = 7y, while r1(s) and r3(s) are also at most of order
5_3/4 with 7‘1(0) =7 (t) =0 and 7‘2(0) = Tg(t) =0.

Now let us consider the minimal action path z(s). Ac-



4710

cording to (I43), the equation of motion for z(s) reads
5.2 / dsty (s’ — 8)a(s")
ds J,
12 Ve +2/2)+ V(- 2/2)] = 0. (56)
To solve (56) perturbatively we set
@(s) = o(s) + £/2 za(s) + Eza(s) + O(E¥/*).  (57)

The part zo(s) will be seen to be identical to the har-
monic solution (I67), which is of order £~1/4 and ful-
fills £o(0) = x; and zo(t) = zy. The other parts
z1(s) and za(s) are also at most of order £~1/4 with
z1(0) = z1(t) = 0 and x2(0) = z2(t) = 0. According
to (8) and (55) one has

2;; Vir+z/2)+V(r—z/2))

= —x + 3cs&2xr? + 0(£%/%). (58)

We note that z(s) must be evaluated up to corrections
of order £3/4 since this path is coupled to the imaginary
time path (o) in the effective action (7).

B. Zeroth-order perturbation theory

In leading order in £ one gains from (42)

ro+—/ ds'y(s — s")ro(s') —ro = 20 — Q@ Ci(s). (59)

51/2

The solution for r¢(s) is straightforward. We introduce
the propagator G (s) of the homogeneous equation with

the initial conditions G4 (0) = 0 and G (0) = 1 which
has the Laplace transform
Gi(2) = [22 + 24(2) — 1] -t (60)
The solution of (59) is then obtained as
Gi(s) [ oy Gals) .
= i |G - ’
ro(a) = r GE + e |Cle) = GEE G0 + 7500
(61)
where
ri(s) = 20 22 G (o) [CF(5) —CF®] . (62)

51/2
J
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Here we have introduced the time-dependent functions

CH(s) = /Osd

Clearly, the last term in (61) obeys rg(0) = r§(¢) = 0 and
depends, through the amplitude @, on the anharmonic-
ities of the potential. r&(s) becomes of order {~3/4 or
smaller near 6., while the first two terms in (61) always
remain of order £~1/4 and guarantee that r(s) fulfills the
boundary conditions r(0) = r; and 7(t) = ry.
Correspondingly, we obtain from (56)

o Gi(s—s")

Cn(s), n=1,2.
G (s) )

(63)

. d [t
o — - f ds'y(s' — s)zo(s") — z0 = 0. (64)

This equation of motion for z¢(s) is homogeneous and can
be shown to be the backward equation of the equation of
motion for 7¢(s) for vanishing inhomogeneity [6]. Hence
the solution of (64) reads.

zo(s) = z; -——————G+(t — 5)
° tOGL()
+xg [G+(t—— s) — %)i)é+(t)] . (65)

The result (65) confirms that for end points x;,zs of or-
der £71/% or smaller, z(s) is at most of order £¢~1/4
assumed above.

, as

C. First-order perturbation theory

To the next order in ¢!/2 one obtains from (42) and
(61)

d 8
71+ E/ ds'y(s — 8')r1(s") — 71 + cat®/?rg?
0

t
=i£—1/2/ ds' R(s,s')zo(s’)
0

_,ECa(s) _ 20%(s) <_A_Q_ _ E) . (66)

€1z \¢gr/z " 29

With the propagator G4 (s) introduced in (60), we find
for the solution of (66)

€12 14 (s) =/ ds' Go(s — &) { / ds" R(s',s")zo(s") + [F(s ) _295820 (s /)] _0452,3(31)3}

_Gi(s)

e / ds' Gy (t — ){i /0 ds” R(s', s")zo(s") + [F(s ) — 26 58201(3')] - 04§2r3(s')3}.

(67)
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On the other hand, according (58) and (61), the equa-
tion of motion for z,(s) is readily obtained from (56) as

d t
g1 — E/ ds'y(s' — )z (s') — o1 = —3ca€3 2mord?.
8
(68)
Thus we get the solution

21(s) = —3ca€?/? [ [ s Guts' = ao(a)re(s)?

_Gi(t—s)
G+()

This combines with (62) to yield, for z;(s) the compact
form,

EV2%2,(8) = —12¢40% € Q? G4 (t — s)
X {:L‘,, [I,;,o(t, S) — Ii,o (t, 0)]

+xf [If0(t,s) — If,o(t,O)]}. (70)

Ads' G+(s')m0(s')rg(s')2]. (69)

J

Here we have introduced the time-dependent functions

d" t 1 Gi(s —s)
Tan(t,8) = g / 9 G E=s)

xG(s")? Galt,s') [CF(s') — CH ()] (T1)
with a = i, f, where
Gi(t,s) = G4(t — 5)/G+(2),
Gyt s) = G4 (t — 8) — G4 (t — 8)G(2)/G+(t).  (72)

D. Second-order perturbation theory

Since the real time motion for r(s) is directly coupled
to the imaginary time path g(o), the magnitude of r(s)
grows near T, as discussed in Sec. IV A. Hence second-
order corrections to ro(s) must also be taken into ac-
count. From (42) and (61) we find

8 t
Fa % / ds'y(s — 8')ra(s') — ra + eabrs? (ro — rg + €%y ) = ig /2 / ds' [R(s,s')z1(s') + 6R(s, s")zo(s")]
0 0

which yields

+6F(s), (73)

8 t
£ra(s) = /0 ds' G4 (s — ') {i{l/z /0 ds" [R(s', s")a1(s") + SR(s', s")zo(s")]

+ E8F(s') — 3ea€r3(s)? [ro(s') — (') + €/ 7ra(s")] }

G+(3) /(; ds' G+(t— s/){igl/zl ds" [R(s',s”)ml(s") +5R(sl,s"):l:0(3”)]

CGL(t)

+E6F(s') — 3cal?rl(s')? [ro(s') —r8(s') + El/zrl(s')] } (74)

Now, with (61), (67), and (74) the extremal real time path r(s) is evaluated up to corrections at most of order £3/4
for end points r; and 7y, which are at most of order £1/4,

The term in the effective action (7) that couples the real time and the imaginary time motion contains the path
z(s). Hence this path must be evaluated up to corrections of order £3/4. From (58) and (61) we obtain

t
By — dis /B. ds'y(s' — 8)z2(s') — z3 = —3caérd {2:1:0 [/;"1/21'1 + 7o — rg] + 61/2:817'8} . (75)
Thus we gain
t
Exa(s) = —30452{/ ds' G4 (8" — s)r§(s'){2zo(s") [51/27'1(3') + 7o(s’) — 'rg(s')] + 61/21:1(3')7'3(3')}

G(t_s)t/ nyaft n [g1/2 ’ ’ a.t 1/2 Y
“—EW/O"“’ G4 (s)r(s){220(s") [6¥/2r1() + 1o(s) — ()] + €/ %a1(s )m(s)}}. (76)

With (65), (70), and (76) the real time path x(s) is determined apart from corrections that are at most of order £5/4
for end points z; and x; of order ¢ —1/4, This suffices to perform a semiclassical approximation of the propagating
function, as will be seen below.
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Finally, let us discuss whether the above solutions for
the real time paths are sufficient to determine the semi-
classical approximation of the propagating function when
the time interval ¢t becomes large. The above trajectories
connect end points within the barrier region of the non-
linear potential (8) by paths with turning points near the
top of the potential barrier. Hence these trajectories re-
main also within the barrier region for all times. As men-
tioned above, we assume that the potential (8) becomes
broader than its harmonic approximation for lower ener-
gies, where typically it passes into a well region. Clearly,
in this case, for very long times end points within the bar-
rier region may also be connected by trajectories moving
back and forth through the well region. The correspond-
ing contributions become in particular relevant for weak
damping and long times. We will show at the end of
Sec. VI that this leads to an upper bound of time for the
validity of the semiclassical approximation of the propa-
gating function based on the real time paths determined
above.

]

0
i .a ) -a . _
X zg, s, t, 5,15, &, T) = 5 [(jtj 0)—-7q4q (0)] +z/0 do [V(q) ~ 3 i

JOACHIM ANKERHOLD AND HERMANN GRABERT 52

V. MINIMAL EFFECTIVE ACTION

Having evaluated the minimal action paths, we may
determine the density matrix in the semiclassical approx-
imation by expanding the functional integral about the
minimal action paths. In this section we first calculate
the minimal effective action. The contribution of the
fluctuations about the minimal action paths is evaluated
in Sec. VI

Using the equations of motions (10), (42), and (56), the
minimal effective action (I28) in an anharmonic potential
field may be written as

E(mf’rfat7zivrivjif)
= Eh(zf’rf’t7 wiﬁTivj’F) + Ea(zf,"'fvtawiari’jyf)v
(77)

where S*(zs,74,t,2;,7;,Z,7) denotes the harmonic re-
sult (I68) and

—%/Ooda AtdsK*(s—ia)q“(a)wh(s) - %/Oada /OtdsK*(s—ia)cI(a)w“(s)

+x 7 (t) — x; 7*(0) — %/0 ds/0 du K'(s — u) [22%(s)z" (u) + 2°(s)z(u)]

ok D D)V D v -

Here we have split the minimal action paths into the
harmonic solution and an anharmonic part according to

2(s) = *(s) +2%(s)
(o) = ¢" (o) + ¢*(0),
r(s) = rP(s) + r?(s). (79)
The harmonic parts are z"(s) = zo(s) given by (65) as
well as g"(o) and 7" (s) specified in (I57) and (I66), re-
spectively.

Using the minimal action paths calculated perturba-
tively in Sec. IV, one obtains from (57)

2°(s) = €/% z1(s) + €aa(s) + O(¢%/*) (80)
and from (31) and (36)
7*(0) = (Z—fg— - %) $(0)
+€1/? % D Quasin(no) +0(E*4).  (81)

=1

Finally, (25) and (55) yield

(78)

() = r(s) + Ema(s) — Gis(5) [CF (5) — € (1]
-G+(s){ (=

+8c40° €12 Q3 [5i(s) — ji(t)]} +0(£¥%).  (82)

> o

- 5) r(s) = :(8)]

Here we have introduced the time-dependent functions

Tals) = [ ds'2(s) G, ) (83)
and
o) = [/ Gals,) G2 (65 () — CT (0],
(84)

where a = 7, f. We note that near T, the harmonic part
* as well as the anharmonic correction 22 in (77) di-
verge; however, the divergencies cancel and the full min-
imal effective action remains finite.

Now inserting (81) and (82) as well as z(s) as given
by (57) into the anharmonic part (78) of the effective
action and adding the harmonic part (I68), the minimal
effective action may be written as
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2(13},1‘f, t,x;,7i, :TJ,'I—‘)

2
Z k/2 (‘E"F) + Ek(mf,"‘fa t,x;, 7, E,F)]

+0(£Y?).

Here the functions Tk are at most of order £~! and con-
tain those contributions to ¥ that are nonvanishing for
z(s) = r(s) = 0. The remaining parts $¥ are also of
order £~1 or smaller. These functions will be evaluated
in the following sections. Afterward, in Sec. VD, the
behavoir of the marginal mode amplitude @ is discussed.

(85)

A. Minimal effective action in leading order
With the imaginary time path (81) one gains from (78)

vo(z%,7) =1 ( g/z 2c405D4Q4) (86)
which is the dominant term of the imaginary time action
of order 1/€ for inverse temperatures below and near 0.
Obviously, the action is independent of Z and essentially
determined by the amplitude @ of the marginal mode
that remains finite near T..

Since the time dependence of the minimal action paths
in real time is determined essentially by the dynamics at a
parabolic barrier, it is advantageous to use the functions

A(t) = —3 O(1) G+.(1) (87)

and

S(t) = AG (t) + G4(t) CF (1), (88)

where ©(t) denotes the step function and C7 (t)
is given in (63). In terms of these functions
¥¥(zs,7¢,t, @i, 7;, T, 7) can be expressed conveniently. To
leading order one finds from (81) and (65)

|

51/2E}(zf57'f7t7 .’Ei,’l‘i,.’i‘,F)
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E?(.’Ef,”'f,t,fl:i,’r‘i, 3_:77—')

6Q

= &T/Z—:L’f A(t)

A(t)

Q
51/2

5@

izaq)° &

[5 ®) = SO 45 9)

Clearly, according to (86) and (89) the leading-order
terms in the minimal effective action are of order ¢~1
and therefore much larger than the action in the purely
harmonic case, which is of order £~ 1/2 for coordinates
that are of order £~1/4,

B. First-order contributions

Next-order terms in the expansion (85) lead to contri-
butions to the minimal effective action that are of order
£1/2 or smaller. Correspondingly, one obtains from (31)
and (78)

V28l (z,7) = z[%iz — a0 <4173 Y273

6°D¢ SQG):|

where  is defined in (I70). Note that the Z2-dependent
term appears already in the imaginary time action of the
purely harmonic potential. For high enough tempera-
tures and z(s) = 0, the two actions in (86) and (90) sum
to yield

3206

e (90)

=2

Q
T—- +z—m2,

"2
(91)

which is the known minimal imaginary time action of a
damped inverted harmonic oscillator (169).

Using the real time part % of the harmonic minimal
effective action (I74) as well as (62), (65), and (81), one
gets, for the real time part of the action in an anharmonic
potential field in first order, the contribution

So(z,7) = T9(z,7) + £Y/2X}(z,7) =

:n(s):o

. A(t)? S(t)  S(t) At
=2?($f,7'f,t,$i,7‘i,if,7_')+1'_f (EG]%Q—F) [2A(t)_2 E:g ] - 7[%——1(\'2%]
0A A@) | S®) i .[S() +20A(®)]?
(51/2 Q- ’") A0) "7 A4 T 27 4A(r)?A

_ S()+20A®t) [ A(t) . . a
R YO { o) [S(t) + 2AA(t)] —5@t) - 2AA(t)}
+iads [S(t) ‘:Et;sa) +2MA®t) — 2A‘:‘4(("t)) ]

— 4¢4€1/26° Q%2 {0Dav; () + 6A(1)C1a (1)

— 4cs€Y/203Q3z; {0D4'y,(t) + 6A(t)Ci1(t) — 3L 0(t, 0) [ (t) + 2AA(t)] + 25:(t) — F;‘(t)} .

~ 315,0(t,0) [S(2) + 204(0)] +247(6) - F{ (1)}

(92)
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Here the influence of the anharmonicities on the real
time part of the effective action is described by the time-
dependent functions v, (t) and j.(t) specified in (83) and
(84) as well as

Can(t) = / ds Cr(s) G( NG )Ia,o(t, s)
. G4(s)® 2
‘/o ds -5y Calt:9) [CT (8) - CF (] CE (s),

(93)

where C;f(s) is given in (63) and o = 1, f.
Using the Laplace transform of the propagator (60)
one gains from (83)

24(t) + 1

_ [, G+(s)
0 = /o B E® " 240 (94)
and
v (t) = 2A(t) — 24(t) — Lt)zzi)i(tf_
+24(t) /td G+ (s) (95)
Furthermore, the functions
0
Fovrom(t) = %/0 do ¢(o)P
X H{ D uncos(vno) — 1]
k=1 \n=—oc0
) /otds 9n(8)Geu (¢, S)} (96)

O't(wf,"'f,t, Zi,Ti, T, 7_‘)

= z;xf {[S(t) + 20 A(®)] (75 (8) L 0 (£, 0) + 7i(£)I5,0(t, 0)] + 2A(t) [y7 (£)Ci1 (¢) + % (£)Cr1(2)] +
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take into account couplings between the anharmonic cor-
rections of the imaginary and the real time minimal ac-
tion paths. We note that the divergent terms for A — 0
in ©? cancel against terms explicitly given in (92) so that
51/221 remains finite at 7.

C. Second-order contributions

The second-order contributions to the minimal effec-
tive action (85) are at most of order 1. For the imaginary
time part we gain with (31)

EX2(Z,7) = —iced* §D2 &F2Q% + 3206
¢ 6

92 Ds €377 Q° )
(97)

Using (80)—(82) one obtains, from (78) for the real time
contribution after a tedious but straightforward calcula-
tion

€Ef($f,’l‘f, t,z;,7;, T, 7_')
= +6ic,0% £ Q* oi(zs,7s,t, 25,7, T, 7), (98)

—1/2

where o} is of order £ or smaller and given by

Fy (1) }
7]

26

te {[5 (8) + 2A A% (0) T 0(t,0) + 24y (£)Cin () + T2 }

+z} {[S(t) + 20 A()]vs (8)I5,0(t,0) + 2A(t)v£ (£)Cra (t) + 220
—24i04€1/293Q3wi{9D4A(t)[’n,i(t) —%ilLi0(2,0)] — 5 (8) — 2A(t)ji(t) L o(t, 0) +3

—24ic,£ /630 f{0D4A(t)['y,-, #(8) = vig0(t,0)] — 57 (t) — 2A(8)5:(t)I1,0(2,0) + ﬁpg (t)} .
4

Fff(t)

} irz; Fi(t) — zr:chf(t)

206

F‘(t)}

(99)

Here the time-dependent functions j} (¢) and v4,5(t) contain the harmonic propagator A(t) as well as S(t) in higher

than quadratic powers. They are defined by

i) = / ds ji(5) Galt, 5) G4 (5)* [CF (s) — CF ()]

and

(100)
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Yo,8(t) = /0 dsy(s) Galt, s) Ipo(t, 5), (101)

where Ig o(t, s) is given by (71) with o, 8 = i, f. Also, we have made use of the fact that the C;} () can be expressed

as [6]

CH(t) = —W, CF(t) = _Ei%) +9, (102)
where according to (I70)
Q=5 3 unlwnlial) - 11 (103)

n=—oo

D. Amplitude of the marginal mode

With the help of the above results we may write Eq. (41) for the amplitude Q in explicit form. By use of the
solution (65) and (70) for the real time path z(s) and (87) and (88), we gain

éTA/Z- Q — 26%c4 D4(1 — 9A) £Y/2Q° — 120c4£Q2{z’wiA(t) [

Fi{()

+i$_fA(t) 2A(2)

For z(s) = 0 this result reduces to a cubic equation for
@ = Q(7). This latter equation has only one stable real
solution for 8 < 6. while for 6 > 0~c, where 6, > 6, de-
pends on the particular value of 7, three real solutions
exist, two of which are stable and one is unstable. For a
detailed discussion for the case of vanishing damping, see
[10]. On the other hand, for x(s) # 0 the inhomongene-
ity in (104) is complex. Then three, in general, complex
solutions of (104) exist for all temperatures (see Fig. 1).
One of these, denoted by Q,e, has for § < 6. imaginary
and real parts at most of order £1/4 for end points 7, z;, z 5
of order £~1/4 and coincides with the high-temperature
solution given in I. When the temperature is lowered the
real part of this solution increases, while the imaginary
part remains small (Fig. 1). Regarding physically rel-
evant real fluctuations of the trajectories, this solution
with amplitude Q,. is found to be stable also at low tem-
peratures (see Sec. VIB). The two other solutions, with
amplitudes denoted by Q,, and Q,,, have large imaginary
parts of opposite sign and small real parts for § < 6.
(Fig. 1). These solutions are unstable for § < .. As
the temperature is lowered the imaginary parts of both
solutions decrease. The real part of Q,, increases and
the Q,, branch becomes stable below the critical tem-
perature, while the real part of Q, decreases and the Q,,
branch remains unstable. The imaginary time path (31)
near 0. is completely determined by (35) and (36) and
the solutions of the cubic equation (104).

As mentioned above, for high temperatures the cubic
and quadratic terms in Eq. (104) can be neglected and
the amplitude Q becomes a linear function of the coor-
dinates 7, z;, and xy. Then the term in %9 containing
QF gives an 72 term, which leads with the term iQz2/2

+ Csa(t) — I 0(t,0)CT (2)

F3(t)
1A() +Cia(t) — Lio(t, U)C{F(t)]

+ %Da 1"} = % [F —iz; CF (t) — iy 2A(t)C’1+(t)] . (104)

-1/4

£

-1/4 =~

~ -

Q,,
Q
|

-1/4 -~

L ) .- b) -

1
12

FIG. 1. (a) Real part Q' and (b) imaginary part Q" of the
marginal mode amplitude Q for 7 = z; = =5 = 0 (thick lines)
and for # = z; = =5 # 0 (thin lines) versus the bifurcation
parameter A. The solid lines represent stable branches and
the dashed lines unstable branches.
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in £/2%} to the imaginary time action (91) and time-
dependent 7xz; and 7zy terms. The remaining terms in
€/25% and the contribution (X% become at most of or-
der ¢. The term ¢X? and the Q3 terms in /2% are also
of order ¢ or smaller while the contributions in ¢/2%}
and in £ containing Q give 7z; and 7z; terms as well
as z2, z;z5, and :z:?r terms. Collecting the corresponding
contributions, one recovers the known high-temperature
result =P in (I74).

VI. SEMICLASSICAL DENSITY MATRIX

With the minimal action (85) we have found the
leading-order term of the path integral for the prop-
agating function (6). The path integral now reduces
to integrals over periodic paths 7(0) = #n(t) = 0 and
7'(0) = 7'(t) = 0 in real time and y(0) = y(0) = 0
in imaginary time describing the quantum fluctuations
about the minimal action paths. As mentioned above,
the relevant fluctuations give a contribution to the full
effective action of order 1. Therefore, the semiclassical
expansion is consistent only if the minimal effective ac-
tion is also determined at least to order 1. In the expan-
sion (85) we have neglected contributions to the minimal
effective action of order £1/2. As a consequence, we may
determine the semiclassical propagating function (6) in
the vicinity of the barrier top provided £1/2¢2 /e € 1,

i.e.,

€ < s, (105)
where € is the semiclassical expansion parameter defined
in (5), which is formally of order v/ When condition
(105) is not satisfied a semiclassical expansion is of course
still feasible, but one has to go beyond the approximate
results derived in the previous sections, eventually by use
of numerical methods.

Now we proceed to determine the density matrix by
expanding the effective action about the minimal action
paths. This will be done in Sec. VI A. It will be seen that
near T, we have to go beyond a simple Gaussian approx-
imation for the path integral over fluctuations about the
imaginary time path. The corresponding non-quadratic
fluctuation potential is discussed in Sec. VIB, leading to
the time-dependent semiclassical density matrix. In par-
ticular, in Sec. VIC we consider the ¢ — 0 limit and gain
an expression for the equilibrium density matrix near T..

A. Quantum fluctuations and fluctuation potential

Since the deviations 7(s), '(s), and y(o) from the min-
imal action paths in real and imaginary time describe
J

] 0 2
(0,0,4) = Z(0,0,Gma] + 5 (¢/6)° [ do [ doz “E 0’411
o 0

= 1 n [° ® d"V(9)
#3000 [Tdor [aon TED| g
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quantum fluctuations, it is natural to scale them with
the quantum length scale go = 1/#A/2Mwq. In view of (5)

and the dimensionless formulation we then have, for an
arbitrary real time path,

q(s) = qma(s) + (€/€) n(s), (106)
where ¢ma(s) denotes the minimal action path in real
time. Correspondingly, for the imaginary time path

3(0) = gma(o) + (¢/€) y(o). (107)

First, let us consider the real time fluctuations. In
the corresponding second-order variational operator the
anharmonicities of the barrier potential are at most of
order £!/2 and can therefore be neglected. As in I, the

contribution of the Gaussian fluctuations around each of
the two real time paths ¢(s) and ¢'(s) gives

] exp{% A “dsn(s) [1’7(3)+ /0 duny(s — ) ()

1
“"(S)] } = EAw]

Note that, according to (I22), the real time paths g(s)
and ¢'(s) are related to the sum and difference paths
considered in the previous sections by r(s) = [q(s) +

q'(s)]/2 and z(s) = q(s) — ¢'(s).
A corresponding Gaussian approximation for the fluc-
tuations about the imaginary time path gives (I78)

[t exe{ =1 [[aou)[-ite)

v [lao ko~ yute) - o)}

(108)

1 1 & 2
= — I1 ¥2un. (109)
V—A V4mo? -

However, when the inverse temperature is increased, this
simple semiclassical approximation diverges for inverse
temperatures near 6. (A — 0). This is due to the fact
that the ¢ direction in function space becomes unstable,
as discussed in Sec. III A. Then higher-order contribu-
tions in the expansion of the imaginary time action about
the minimal action path have to be taken into account
according to

y(o1) y(o2)

y(on). (110)

—d9ma
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Here an arbitrary imaginary time path §(o) is decom-
posed according to (107) and X[0,0, g] is the imaginary
time part of the effective action (I28).

For the undamped case the breakdown of the Gaus-
sian approximation near T, has been investigated in de-
tail previously [10]. We have shown that the amplitude
of the minimal action path @, which becomes marginal
near 6., is associated with a marginal fluctuation mode
amplitude Y;. Hence one eigenvalue of the second-order
variational operator vanishes at § = 6. for the purely
harmonic potential. As a consequence, the amplitude
Y; becomes arbitrarily large while all other mode ampli-
tudes remain of order 1. In a weakly anharmonic poten-
tial the harmonic fluctuation potential for the amplitude
Y; is replaced by a stable, quartic fluctuation potential.
This extends to the case of finite damping, where in the
harmonic approximation ¢(o) is an eigenfunction of the
second-order variational operator with an eigenvalue pro-
portional to A. We note that ¢(o) satisfies the bound-
ary conditions ¢(0) = ¢(8) = 0 required for fluctuations
y(o). As a consequence, ¢(o) is the direction in function
space corresponding to the marginal fluctuation mode.
Now decomposing a fluctuation y(o) into a component
Y1¢(o) and stable mode amplitudes and assuming that
Y; becomes at most of order e~1/2 while the other mode
amplitudes remain of order 1, we obtain from (110) the
nonquadratic fluctuation potential

V(Q,Y1) = (¢/€)% (2[0,0,g] — £[0,0, dma)) ly(0)=v16(c)

i (—A +60°caDs £ Q%) YY

Il

+260%c4D, e Y2 QYE

JrgcllD4 Y1 +o(1). (111)

Accordingly, the divergent factor 1/4/—A in (109) is re-
placed by the fluctuation integral

K(Q) = _\/i:ﬂ /_oo Y, exp[-V(Q,Y1)],  (112)

which remains finite for 8 = 0.. Here Q is determined by
the cubic equation (104). From (111) one sees that the
coefficient

A1(Q) = —A +60%c4D4£Q? (113)
of the harmonic term may vanish, but the remaining
terms of the fluctuation potential always constrain Y;
to fluctuation amplitudes at most of order e 1/2. The
region in parameter space of coordinates and tempera-
ture, where the full fluctuation potential (111) is needed,
is investigated in the next section.

B. Evaluation of the fluctuation potential
and semiclassical density matrix

Since the fluctuation potential depends on the solu-
tions @ of the cubic equation (104), we first have to in-
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vestigate the stability of the various branches of the mode
amplitude Q. Then the behavior of the fluctuation po-
tential V(Q, Y1) is discussed as a function of temperature
and coordinates. From there we obtain the semiclassical
density matrix in the region near T..

In the dynamical case, i.e., z(s) # 0, the amplitude Q
determined by (104) is a complex time-dependent func-
tion of the coordinates 7, x;, and =y with three differ-
ent branches, as discussed in Sec. VD, and V(Q,Y) is
defined in the complex Y; plane. However, since only
real paths are of physical relevance, we consider fluctua-
tions parallel to the real Y7 axis only. For high tempera-
tures these fluctuations about the Q. branch of the cubic
equation (104) have an eigenvalue A1(Q,.) = —A > 0.
With increasing inverse temperature the real part of Q.
also increases [see Fig. 1(a)] and anharmonic terms in
V(Qse, Y1) become important for T near T,.. For temper-
atures sufficiently below T, one has A;(Qse) = 2A > 0
and a simple semiclassical approximation of K(Qs.) is
again appropriate. This shows that the minimal action
path with amplitude Q,. is stable with respect to real
fluctuations for high as well as for low temperatures.
The two other solutions Q,, and Q. of (104) have large
imaginary parts for high temperatures [see Fig. 1(b)].
As a consequence, one can show that Re{A1(Q,»)} and
Re{A1(Q.)} are negative and both branches are unsta-
ble. When the temperature is lowered the imaginary
parts of these branches decrease. The real part of Q;,
increases as T. is approached and becomes of order of
the real part of Q,., however, with an opposite sign [Fig.
1(a)]. Hence the corresponding minimal action path be-
comes stable for T near T,.. The real part of Q. remains
small so that for T < T, the eigenvalue A1(Q.) = —A
is negative and the corresponding minimal action path
unstable.

Now let us consider the fluctuation potential V(Q, Y7).
For real Q the potential (111) as a function of tempera-
ture has been investigated previously [10]. For complex
Q, the above analysis shows that for high enough tem-
peratures one has one stable minimal action path with
amplitude Q,., while for temperatures sufficiently below
T. two stable branches with amplitudes Q;. and Q,,, ex-
ist around which a simple semiclassical approximation
is appropriate. For temperatures near 7. where |A| is
smaller than e, the adequate semiclassical approxima-
tion depends on the particular values of the end points 7,
x;, and x¢ in (104). Three cases must be distinguished.
First, for 7, x;, and = at most of order ¢3/2/¢ the eigen-
values |Re{A1(Q)}| of the three complex branches of Q
are smaller than € and the quartic fluctuation potential
V(Q, Y1) must be used. Similiarly to the static case (z; =
zy = 0), one can show that the time-dependent density
matrix is independent of the particular root of (104) that
is inserted into (112). Second, for 7 smaller than order
€3/2/¢ but z; or/and z; larger than order €3/2/¢, the
eigenvalues |[Re{A1(Q)}| of Q. and Q,, become smaller
than order € while Re{A;(Q.)} is then larger than order
€ and negative. Therefore, for fluctuations around the
Qse and Q,, branches the quartic potential V(Q,Y7) is
necessary and the density matrix is independent of the
particular root Q.. or Q,, inserted into V(Q,Y7). In
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this region, the @, branch is well separated from the
stable Qe and Q,, branches and its contribution to the
path integral may be neglected since Re{A;(Q.)} < —e.
Finally, for end points 7 larger than order €3/2 /&, only
the Qe solution contributes and a simple semiclassi-
cal approximation of the fluctuation integral suffices.
This is due to the fact that not only the contribution
of the @, branch but also the contribution of the Q,,
branch is exponentially suppressed for Re{A1(Qsn)} >
—e since Re{¢25(Q,n)/i€?} — Re{€25(Qsc)/i€?} is then
larger than order 1. Here ¥(Q) denotes the minimal effec-
tive action (85) evaluated at Q. The fluctuation prefac-
tor (112) matches smoothly onto the simple semiclassical
approximations for temperatures sufficiently below and
above T..

Having evaluated the effective action and the fluc-
tuation integral for small £ and e, we gain the time-
dependent semiclassical density matrix

p(zy,rge,t) = /d:ci dr;dz dF J(zs,75,t, 25,75, F,T)

X A(@s,7i, &, T) (114)
with the propagating function
J(mf”"fatimiarivi:"_')
16 1 1 o
==->__ - _ - K
Z €3 87| A(t)| v/4n62 (J;Il v, un) (%))
i g2
s k/2[y k(= =
xexp{ 5 Z £ 2g (7, 7
k=0
+Ef(mf17‘f,t, a’i’ria‘ia"—')]}- (115)

The contributions $%(z,7) to the imaginary time part
of the minimal effective action X are given in (86), (90),
and (97) while the contributions I¥ to the real time part
are specified in (89), (92), and (98). The fluctuation
integral K (Q) is specified in (112) and the amplitude Q
may be calculated from the cubic equation (104). Within
the semiclassical approximation the above formula (114)
gives the time evolution of the density matrix near the
top of a potential barrier starting from an initial state
deviating from thermal equilibrium as described by the
preparation function A(x;,7;, E,7).

The formulas (114) and (115) are the central result of
this article. Let us consider the range of temperature and
time where the result (114) and (115) is valid. For tem-
peratures T' < T, the function A increases with increas-
ing 6. As a consequence, the marginal mode amplitude
Q also grows and terms in the minimal effective action,
such as, e.g., £3/2r3Q, which are at most of order £1/2
near 7., become of order 1 for A of order El/ 6. Hence
the result (114) is valid from high temperatures down to
temperatures somewhat below T, where A is still smaller
than £1/6,

Next let us discuss the range of time within which the
above semiclassical density matrix is valid. The density
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matrix is evaluated by integrating the propagating func-
tion over initial coordinates. Hence an upper bound of
time is provided by the condition that trajectories start-
ing at t = 0 far away from the barrier top in the anhar-
monic range of the potential do not contribute to (114).
This upper bound may be estimated by considering the
case of vanishing damping. Then the energy of the rele-
vant nonlocal paths is of the order of the potential energy
at the barrier top since paths with larger energy are expo-
nentially suppressed due to the Boltzmann factor in the
propagating function while path with lower energy do not
reach the barrier region. The time an undamped parti-
cle with an energy of order of the barrier height needs
to reach the region near the barrier top when starting
in the anharmonic range of the potential is determined
by the long time behavior of the propagator G4 (t). Ac-
cording to (I83), for times ¢ >> 1 one has an exponential
growth as G4 (t) «x exp(t) in the undamped case. Hence
the time t to reach end points within a region at most
of order £~1/4 about the barrier top when starting from
initial coordinates of order 1/€ with an energy of order of
the barrier height is at least of order |In{|. For nonvan-
ishing damping the long time behavior of G (t) is given
by exp(wgt), where wg is the Grote-Hynes frequency [14]
given by the positive solution of w2 + wry(wgr) = 1. As a
consequence, for nonvanishing damping the upper bound
of time can be estimated as t < wg'|In¢|.

We note that another upper bound of time arises from
the fact that we evaluate the time evolution of the den-
sity matrix near the instability point of an anharmonic
potential. Correspondingly, the equilibrium density ma-
trix increases with increasing coordinate 7. This coor-
dinate is connected to the initial coordinates z; and r;
of the real time trajectories via the preparation func-
tion A(z;,7;,%,7). Hence, depending on the preparation
function, the domain of relevant coordinates z;, r;, and
7, which contribute to the integrals in (114), may also
increase with increasing time and eventually may be-
come larger than the barrier region where our results
are valid. In summary, the semiclassical density matrix
(114) is valid for high temperatures down to tempera-
tures somewhat below T, for end coordinates at most of
order ¢~1/4, and for a large time range with an upper
bound of order wz'|Iné|.

C. Equilibrium density matrix

For t = 0 the density matrix (1) reduces to the
initial state (2). Here we want to recover this result
from (115). In particular, for the preparation function
@z, 74, &,7) = 6(x; — &) 6(r; — 7), the initial state re-
duces to the equilibrium density matrix of the dissipative
quantum system.

In the limit ¢ — 0, the functions A(t) and S(t) can be
expanded according to (I71) and (I72) as

A(t) = —% + O(t3) (116)

and
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S(t) = A— %Q £ + O(t). (117)
Correspondingly, the functions F§'(t), Cy,(t), and
I, 0(t,0), as well as C; (t) appearing in the cubic equa-
tion (104), vanish for ¢ — 0 and the amplitude @ becomes
a time-independent function of 7 only, which will be de-
noted by Q. The real time part of the minimal effective
action reduces according to (116) and (117) to

|

w

1¢

J(wfyrf,tvxi,'riajaf) = 53

n=1

b

—Qz? +Qm§

where

2
Se(2,7) = ) &% B§(2,7)

k=0

(120)

z(s8)=0

The time-dependent part in (119) represents, for ¢ — 0,
the ¢ functions 6(zs — z;) 6(ry — r;) and we have

}in(l} J(xg,re,t @i, 15, &,7) = 6(zg — z5)0(r5 — 1;) po(Z, 7).
=

(121)

This way we obtain from (114), in the limit ¢ — 0, the
expected result

p(zg,rs,0) = /da‘cd?)\(acf,rf,i:,i)pg(i,?), (122)

where the dimensionless equilibrium density matrix for
temperatures near 7, reads

PG(:E,F) = %%\/4—]7;? <I=IIV121u’n> K(Q)

X exp [££SH(E‘, F)] .

53 (123)

Here Z is a normalization constant and Q is determined
by the cubic equation (104) for z; = zy = 0, i.e.,

—A 9 3 1/2/73 2 2 7
51/2Q_20 caD4(1 — 0A) £Y/2Q% — 3¢40° D3 £Q%F = %"
(124)

According to (120), the minimal imaginary time action
reads

1 I -
Z 3 \Jano? (H l/nun) K(Q)
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2

Z €k/2 Zf(mf’rfvt, T, 73, T, T)
k=0

(g —@)(rg—ri) i 2 i 2
This combines with the imaginary time part of the mini-
mal effective action (86), (90), and (97) to yield the prop-
agating function (115) for small times

7t t

{3’5 [(mf —zi)(rg —1i)
2 e?

1 &2 1
exp [55—259(5:,7")] T P

(119)

So(%,7) = i[eﬁ + %5:2

61/2 - 0464 (291)4@4

+4D3 £/77Q% + %Dz &*"’QZ)

+32¢66° (D5 €3/27Q5 + g—De 6@6)}

+0(£Y?). (125)
For temperatures above the critical temperature where
|A| is larger than order £!/2, (125) reduces to the har-
monic action (91) and from (123) one regains, in this
limit, the equilibrium density matrix of a damped, in-
verted harmonic oscillator (I78). For vanishing damping
the equilibrium density matrix (123) coincides in leading
order in { with our earlier result [10]. Hence (123) gen-
eralizes the investigation of [10] to dissipative quantum
systems.

VII. SUMMARY AND ILLUSTRATION
OF RESULTS AND CONCLUSIONS

In this section we summarize the main results and clar-
ify the interrelationship between the various formulas de-
rived. The results are illustrated with an example.

A. Explicit evaluation of the density matrix

To obtain definite results for the density matrix the
propagating function (115) has to be evaluated explic-
itly. This is done in the following way. For a system with
given dissipative mechanism the macroscopic damping
kernel «(s) or its Laplace transform 9(z) is known. At
given inverse temperature € and time ¢, five basic func-
tions can be evaluated. Three of these are A, defined
in (9) with (13), which vanishes at 8 = 6.; 2 defined in
(103); and the marginal direction in function space ¢(o)
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defined in (23) with (13) and (21). Since ¢(o) is needed
in the time interval (0, 8) only, it is convenient to use the
representation (15) for explicit evaluations. The func-
tions A, 2, and ¢(o) are characteristic for the imaginary
time motion. The two other functions are A(t), defined in
(87) with (60), and S(t), defined in (88) with (30), (50),
and (63). These functions are characteristic for the real
time motion. We note that, apart from ¢(o), these func-
tions are already needed to determine the propagating
function (I80) for the purely harmonic potential.

From ¢(o) one obtains in the next step the coefficients
D,, defined in (37). For the contributions ¥} and 2 to
the imaginary time part of the minimal effective action
the coefficients Ds, ..., Dg are needed, while the real time
parts 3! and £2 depend on D, only. Due to the fact that
the functions C;I (¢) can be expressed in terms of A(t) and
S(t) [see (102)], these latter functions determine I, (¢, s)
in (71), which is needed for n = 0,1, the functions j,(t)
in (84), jX(¢t) in (100), and Cq,n(t) in (93). Further,
from these functions and ~v(s), the functions v,(t) and
Ya,3(t) introduced in (83) and (101), respectively, may
be evaluated. Finally, the functions F*""*m(t) in (96),
which are needed for p = 2,3,5 and m = 1, 2, are deter-
mined by A(t), v(s), and ¢(o). These functions describe
higher-order couplings between the real time and imag-
inary time motion. So far all functions are specific for
the dissipative mechanism and independent of the form
of the potential barrier.

The marginal mode amplitude @ is determined by the
cubic equation (104), which contains the functions A(t),
S(t), In,0(t,0), Cq,1(t), and F5(t). This equation also
depends on potential parameters. Having solved the cu-
bic equation (104) for @ at given inverse temperature 6
and coordinates 7, xy, and z;, the minimal effective ac-
tion (85) can be calculated for given coordinates x4, ry¢,
zi, i, T, and 7. All coefficients of the fluctuation po-
tential are now known and the fluctuation integral K(Q)
can be determined from (112). Then the propagating
function is known explictly. Finally, with an appropriate
preparation function A(z;,7;,Z,7), one gets the density
matrix (114).

B. The quartic potential with Ohmic dissipation

To illustrate the above results we investigate the time
evolution of a particle that is initially localized near the

J

r() = 2 > GE 17 a2 V"fxf;(—_y’;t)yﬁ
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barrier top of the quartic potential field

V(e) =1+ 3E4" (126)
2 4

This model is obtained by setting ¢4 = 1 and c3, = 0
for k > 2 in the above formulas. The heat bath is
chosen to be Ohmic leading to frequency-independent
damping. Then the macroscopic damping kernel reads
~¥(t) = 246(t) and its Laplace transform 4(z) = . This
allows for an explicit evaluation of some functions in-
volved in the propagating function. One gets

A= 1 +-—-—1—~—-
- (2wr +v)m

x[( “’R+7) ‘1:(1+“;—f)], (127)

where ¥(z) denotes the digamma function and

2 1/2
wRp = (7—-{—1) —Z.

T 5 (128)

The temperature-dependent function € given in (103)
has a logarithmic divergency for Ohmic damping. This
can be removed by introducing a more realistic damp-
ing kernel with finite memory time such as, e.g., in a
Drude model where v(t) = ywp exp(—wpt) and §(z) =
Ywp/(wp + z). In the limit wp > 1, the Drude model
behaves like an Ohmic model except for very short times
of order 1/wp, which we do not consider here. Accord-
ingly, we get from (103)

1 o~ _ |valwp/(wp + |va]) — 1
Q=3 Z 2

. 129
6 2~ U2+ lvalwn/(wp + ) -1 (129

The basic time-dependent functions are obtained as [6]

1
A(t) = 2%on 1 {exp[—(wr + v)t] — exp [wrt]} (130)
and

1 1 wRr + Y
= — t —
S(t) 22wR+’Y{CO ( 3 9) exp [—(wr + 7)t]
+ cot (—(‘-)—EG) exp [u.JRt]} —TI(), (131)
2
where
_Vlt) JF (1’_w_n,1 _wr e_m)]
141 1241
WRET, ot (132)
141 1%
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with the hypergeometric function 2 Fi (a, b, ¢; z). Further-
more, from (30) we gain
gn(s) = 278(s) — [vn|y exp(—|vals). (133)

Now let us consider the preparation function

A(.’l!,',’r'i,i‘,f) = 5(271, — (f) 6(7‘1

_ 1
-7 VAarmog

(ri — qo)? z} -
X exp [ ok 2] e,
(134)

which describes an initial state where the particle is lo-
calized near go. Here pg(Z,7) is the equilibrium density
matrix (123) with c¢ = 0. The diagonal part of the ini-
tial reduced density matrix is a Gaussian wave packet
independent of temperature and reads

1 _ 2
exp |— (9 — 90) .
VLY 409

We are interested in the position probability distribution
P(q,t) = p(0,q,t) describing the decay of the unstable
initial state. Inserting (134) into (114) one gains

P(g,0) = (135)

1
P(q,t) = Varoe /dwi dr; J(0,q,t, i, 75, i, 75)
— 2 2
X exp [— (ri —g0)” 2 } /Pe(ﬂ?i,h’)-

40’0 160’0
(136)

Proceeding along the lines described in Sec. VIIA,
P(g,t) may be determined explicitly. Some results are
illustrated in Fig. 2. The position distribution function
P(g,t) is shown for various times ¢ and for Ohmic damp-
ing with v = 5. The cutoff that regularizes © in (129)
is chosen to be wp = 100. Hence the dynamics of the
system behaves like that of an Ohmic model for times
t > 0.01. From (127) one obtains, for v = 5, the criti-
cal inverse temperature 6. = 6.289... . Further, we have
chosen £ = € = 0.05, 0o = 0.02, and ¢o = 0.04, which
allows to study the decay of the unstable initial state for
times up to t ~ 10. Figure 2(a) represents P(g,t) for
small inverse temperatures § = 1, while Fig. 2(b) depicts
results for § = 0.. Thermal and quantum fluctuations
lead to a decay of the initial state causing a decrease
of the maximum of the distribution function and an in-
crease of the width with increasing time. However, a dou-
bly peaked distribution emerges at larger times when the
system reaches the nonlinear range of the potential. This
occurs sooner at lower temperatures [Fig. 2(b)], where
quantum fluctuations are large.

To study this point in greater detail we determine the
probabilities to find particles on the left- or the right-
hand side of the barrier, respectively. These probabilities
are given by

pa(t) = [ dq P(q,t) ©(q), (137)

with p, (t) + p_(t) = 1. In particular, for £ = 0 we gain,

4721
il I ' I A T T T ]
w0
- oo -
o
T
R A |
—
Qf\
ot |
N—
(a9
—
oL —
_8 -4
——= =02
= =05
04 F—am 1=
et
— |
“ﬂ\
(o)
~—r
A< 02
-5 -10

FIG. 2. Position distribution function P(q,t) for a system
with a quartic potential and Ohmic dissipation starting from
the unstable initial state (134) for various times t and (a)
9 = 1.0 and (b) 6 = 6. = 6.2895. See the text for system
parameters.

from (135) and (137),

p-(0) = jerfe (40/2V/%0)

where erfc(z) denotes the complement to the error func-
tion. For large times p4(t) become stationary and the
splitting ratio r(t) = p_(t)/p+(t) saturates at a finite
value r,.

In particular, for the case of a purely parabolic bar-
rier, the integrals in (136) and (137) can be done exactly.
Then, one obtains

(138)

pFB(t) = %erfc{% [%Ett;T‘to (1 —40092)

) —-1/2
A3
0'0—-A+ le }

The high-temperature limit of this formula leads to the
classical result, which reads for large times

(139)
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FIG. 3. Asymptotic value of the splitting ratio r, of an
unstable initial state as a function of inverse temperature 6.
See the text for system parameters. The solid line represents
the result for the quartic potential, the dashed line represents
the classical result, and the dash-dotted line represents the
quantum mechanical result for a parabolic potential. The
initial value of the splitting ratio 7(0) is shown as a dotted
line.

1 % 0 1/2
i ) = = 22— . (140
WL1§1P—(t) 2erfc [2 (1 - 900) ] (140)

Figure 3 shows the asymptotic value r, of the split-
ting ratio for the quartic potential as well as the quan-
tum mechanical and the classical results for the purely
parabolic barrier as a function of the inverse temperature
6. We have used the same set of parameters as above. In
this case the ratio r(t) becomes independent of time for
t2 4. For high temperatures the system behaves classi-
cally. Then a decrease of temperature leads to a decrease
of thermal fluctuations so that r, also decreases. At lower
temperatures quantum effects are important. First, due
to the small width o¢ of the initial position distribution
P(q,0), momentum fluctuations enhance r, above the
classical value. On the other hand, due to tunneling pro-
cesses, the width of the minimum of the diagonal part
of the equilibrium density matrix Py(q) at the barrier
top becomes smaller than that of the classical distribu-
tion. This corresponds effectively to a barrier with larger
curvature leading to a smaller ratio r,. The first effect
dominates in an intermediate temperature range, while
the second effect dominates for low temperatures near
6.. For a purely parabolic barrier the width of the min-
imum of Py(q) is proportional to \/W , which decreases
with increasing inverse temperature and vanishes at 6.
so that then r, = r(0) [see also (139)]. In the quartic
barrier potential the value of r, decreases rapidly within
a narrow temperature region around 6. and then settles
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at a value of r, somewhat above 7(0). For inverse tem-
peratures 8 > 6. the splitting ratio r, becomes nearly in-
dependent of temperature. This demonstrates again that
the change of stability of the minimal action paths and
the breakdown of the simple semiclassical approximation
near T, correspond to a changeover from a temperature
range where the dynamics near the barrier top is almost
classical to a range where quantum effects dominate.

C. Conclusions

Employing the path integral approach, we have calcu-
lated the density matrix of a dissipative quantum sys-
tem with a general anharmonic and symmetric barrier in
the temperature region where large quantum fluctuations
near the barrier top render the harmonic approximation
insufficient. We have shown that for a weakly anhar-
monic potential, where the ground state in the inverted
potential is only weakly affected by anharmonicities, the
time evolution of the density matrix can be determined
by means of classical perturbation theory and the semi-
classical approximation.

Near a critical temperature T, one mode of the imag-
inary time path fluctuations becomes marginal in the
purely harmonic potential; however, due to anharmonici-
ties, the corresponding amplitude remains finite near 7.
The fluctuation path integral has to be determined be-
yond the Gaussian approximation in this critical region.
Due to the damping-induced coupling between the imag-
inary and the real time motion, the real time paths are
also affected by anharmonic terms in the potential field.

Within the systematic approximations made, con-
trolled by the small anharmonicity parameter £ and the
small parameter € for quantum fluctuations, the results
on the time evolution of the density matrix are valid from
high temperatures down to temperatures somewhat be-
low T, and over a large range of time excluding very long
times. The approximation scheme advanced in this ar-
ticle can formally be extended also to temperatures far
below T,, however, an explicit evaluation of the density
matrix then requires numerical methods. We have il-
lustrated our results by considering the dynamics of a
particle initially localized near the instability point of a
quartic model potential. The findings of this article may
also be used to determine a quasistationary nonequilib-
rium flux state. This extension of results presented in I
to the temperature region where quantum tunneling is
dominant is planned to be given in a subsequent paper.
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